Ameera X. Patel
Profile Url: ameera-x--patel
Researcher at Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus
Adolescent changes in human brain function are not entirely understood. Here we used multi-echo functional magnetic resonance imaging (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in N=298 healthy adolescents. Participants were aged 14-26 years and were scanned on two or more occasions at least 6 months apart. We found two distinct modes of age-related change in FC: "conservative'' and "disruptive''. Conservative development was characteristic of primary cortex, which was strongly connected at 14 years and became even more connected in the period 14-26 years. Disruptive development was characteristic of association cortex, hippocampus and amygdala, which were not strongly connected at 14 years but became more strongly connected during adolescence. We defined the maturational index (MI) as the signed coefficient of the linear relationship between baseline FC (at 14 years, FC14) and adolescent change in FC (ΔFC14-26). Disruptive systems (with negative MI) were functionally specialised for social cognition and autobiographical memory and were significantly co-located with prior maps of aerobic glycolysis (AG), AG-related gene expression, post-natal expansion of cortical surface area, and adolescent shrinkage of cortical depth. We conclude that human brain organization is disrupted during adolescence by the emergence of strong functional connectivity of subcortical nuclei and association cortical areas, representing metabolically expensive re-modelling of synaptic connectivity between brain regions that were not strongly connected in childhood. We suggest that this re-modelling process may support emergence of social skills and self-awareness during healthy human adolescence.
Cerebral Cortex, 2018-12-27
Seminal human brain histology work has demonstrated developmental waves of myelination. Here, using a micro-structural magnetic resonance imaging (MRI) marker sensitive to myelin, we studied fine-grained age differences to deduce waves of growth, stability, and decline of cortical myelination over the life-cycle. In 484 participants, aged 8-85 years, we fitted smooth growth curves to T1- to T2-weighted ratio in each of 360 regions from one of 7 cytoarchitectonic classes. From the first derivatives of these generally inverted-U trajectories, we defined three milestones: the age at peak growth; the age at onset of a stable plateau; and the age at the onset of decline. Age at peak growth had a bimodal distribution comprising an early (pre-pubertal) wave of primary sensory and motor cortices and a later (post-pubertal) wave of association, insular and limbic cortices. Most regions reached stability in the 30s but there was a second wave reaching stability in the 50s. Age at onset of decline was also bimodal: in some right hemisphere regions, the curve declined from the 60s, but in other left hemisphere regions, there was no significant decline from the stable plateau. Network analysis of the micro-structural connectome revealed that late developing (second wave) regions had significantly higher degree and other measures of centrality. These results are consistent with regionally heterogeneous waves of intracortical myelinogenesis and age-related demyelination, which may be relevant to the onset of neuropsychiatric disorders, and dementia, and the staged acquisition and decline of motor and cognitive skills over the course of the life-cycle.