Joana B Pereira
Profile Url: joana-b-pereira
Researcher at Karolinska Institute, Lund University
Alzheimers disease (AD) is a progressive neurodegenerative disorder characterized by a deterioration of neuronal connectivity. The pathological accumulation of tau protein in neurons is one of the hallmarks of AD and has been connected to the loss of dendritic spines of pyramidal cells, which are the major targets of cortical excitatory synapses and key elements in memory storage. However, the detailed mechanisms underlying the loss of dendritic spines in patients with AD are still unclear. Here, comparing dendrites with and without tau pathology of AD patients, we show that the presence of tau pathology determines the loss of dendritic spines in blocks, ruling out alternative models where spine loss occurs randomly. Since memory storage has been associated with synaptic clusters, the present results provide a new insight into the mechanisms by which tau drives synaptic damage in AD, paving the way to memory deficits by altering spine organization. ### Competing Interest Statement The authors have declared no competing interest.
PLOS ONE, 2017-08-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH - BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.
Parkinsons disease (PD) is a progressive neurodegenerative disorder characterized by topological changes in large-scale functional brain networks. These networks are commonly analysed using undirected correlations between the activation signals of brain regions. However, this approach suffers from an important drawback: it assumes that brain regions get activated at the same time, despite previous evidence showing that brain activation features causality, with signals being typically generated in one region and then propagated to other ones. Thus, in order to address this limitation, in this study we developed a new method to assess whole-brain directed functional connectivity in patients with PD and healthy controls using anti-symmetric delayed correlations, which capture better this underlying causality. To test the potential of this new method, we compared it to standard connectivity analyses based on undirected correlations. Our results show that whole-brain directed connectivity identifies widespread changes in the functional networks of PD patients compared to controls, in contrast to undirected methods. These changes are characterized by increased global efficiency, clustering and transitivity as well as lower modularity. In addition, changes in the directed connectivity patterns in the precuneus, thalamus and superior frontal gyrus were associated with motor, executive and memory deficits in PD patients. Altogether, these findings suggest that directional brain connectivity is more sensitive to functional network changes occurring in PD compared to standard methods. This opens new opportunities for the analysis of brain connectivity and the development of new brain connectivity markers to track PD progression.