Maxwell Shinn
Profile Url: maxwell-shinn
Researcher at Yale University
Neuron, 2017-12-21
Macroscopic cortical networks are important for cognitive function, but it remains challenging to construct anatomically plausible individual structural connectomes from human neuroimaging. We introduce a new technique for cortical network mapping, based on inter-regional similarity of multiple morphometric parameters measured using multimodal MRI. In three cohorts (two human, one macaque), we find that the resulting morphometric similarity networks (MSNs) have a complex topological organisation comprising modules and high-degree hubs. Human MSN modules recapitulate known cortical cytoarchitectonic divisions, and greater inter-regional morphometric similarity was associated with stronger inter-regional co-expression of genes enriched for neuronal terms. Comparing macaque MSNs to tract-tracing data confirmed that morphometric similarity was related to axonal connectivity. Finally, variation in the degree of human MSN nodes accounted for about 40% of between-subject variability in IQ. Morphometric similarity mapping provides a novel, robust and biologically plausible approach to understanding how human cortical networks underpin individual differences in psychological functions.
NeuroImage, 2017-12-21
Complex network topology is characteristic of many biological systems, including anatomical and functional brain networks (connectomes). Here, we first constructed a structural covariance network (SCN) from MRI measures of cortical thickness on 296 healthy volunteers, aged 14-24 years. Next, we designed a new algorithm for matching sample locations from the Allen Brain Atlas to the nodes of the SCN. Subsequently we use this to define, transcriptomic brain networks (TBN) by estimating gene co-expression between pairs of cortical regions. Finally, we explore the hypothesis that TBN and the SCN are coupled. TBN and SCN were correlated across connection weights and showed qualitatively similar complex topological properties. There were differences between networks in degree and distance distributions. However, cortical areas connected to each other within modules of the SCN network had significantly higher levels of whole genome co-expression than expected by chance. Nodes connected in the SCN had significantly higher levels of expression and co-expression of a Human Supragranular Enriched (HSE) gene set that are known to be important for large-scale cortico-cortical connectivity. This coupling of brain transcriptome and connectome topologies was largely but not completely related to the common constraint of physical distance on both networks.
Cerebral Cortex, 2017-10-27
How does human brain organization change over the course of adolescence? Motivated by prior data on local cortical shrinkage and intracortical myelination, we predicted age-related changes in topological organisation of cortical structural networks. We estimated the structural correlation matrix from magnetic resonance imaging (MRI) measures of cortical thickness at 308 regions in a sample of N=297 healthy participants, aged 14-24 years (inclusive). We used a novel sliding-window analysis to measure age-related changes in network attributes globally, locally and in the context of several community partitions of the network. We found that the strength of structural correlation generally decreased as a function of age. Association cortical regions demonstrated a sharp decrease in nodal degree (hubness) from 14 years, reaching a minimum at approximately 19 years, and then levelling off or even slightly increasing until 24 years. Greater and more prolonged age-related changes in degree of cortical regions within the brain network were associated with faster rates of adolescent cortical myelination and shrinkage. The brain regions that demonstrated the greatest age-related changes were concentrated within prefrontal modules. We conclude that human adolescence is associated with biologically plausible changes in structural imaging markers of brain network organization, consistent with the concept of tuning or consolidating anatomical connectivity between frontal cortex and the rest of the connectome.