Development of a predictive risk model for severe COVID-19 disease using population-based administrative data

0 views • Nov 8, 2021


Author Name

Xiansong Wang

Yi Li

Published 2 Projects

Infectious Diseases Genetics

Ian Chi Kei Wong

Gary Tse

Add New Author

BackgroundRecent studies have reported numerous significant predictors for adverse outcomes in COVID-19 disease. However, there have been few simple clinical risk score for prompt risk stratification. The objective is to develop a simple risk score for severe COVID-19 disease using territory-wide healthcare data based on simple clinical and laboratory variables. MethodsConsecutive patients admitted to Hong Kongs public hospitals between 1st January and 22nd August 2020 diagnosed with COVID-19, as confirmed by RT-PCR, were included. The primary outcome was composite intensive care unit admission, need for intubation or death with follow-up until 8th September 2020. ResultsCOVID-19 testing was performed in 237493 patients and 4445 patients (median age 44.8 years old, 95% CI: [28.9, 60.8]); 50% male) were tested positive. Of these, 212 patients (4.8%) met the primary outcome. A risk score including the following components was derived from Cox regression: gender, age, hypertension, stroke, diabetes mellitus, ischemic heart disease/heart failure, respiratory disease, renal disease, increases in neutrophil count, monocyte count, sodium, potassium, urea, alanine transaminase, alkaline phosphatase, high sensitive troponin-I, prothrombin time, activated partial thromboplastin time, D-dimer and C-reactive protein, as well as decreases in lymphocyte count, base excess and bicarbonate levels. The model based on test results taken on the day of admission demonstrated an excellent predictive value. Incorporation of test results on successive time points did not further improve risk prediction. ConclusionsA simple clinical score accurately predicted severe COVID-19 disease, even without including symptoms, blood pressure or oxygen status on presentation, or chest radiograph results.

Infectious Diseases
Infectious Diseases 62 Projects